Exercise 19

A series circuit contains a resistor with $R=40 \Omega$, an inductor with $L=2 \mathrm{H}$, a capacitor with $C=0.0025 \mathrm{~F}$, and a $12-\mathrm{V}$ battery. The initial charge is $Q=0.01 \mathrm{C}$ and the initial current is 0 . Find the charge at time t.

Solution

The initial value problem for charge in this LRC series circuit with a V-volt battery is

$$
L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{Q}{C}=V, \quad Q(0)=0.01, \quad Q^{\prime}(0)=0 .
$$

Because the ODE is linear and inhomogeneous, the general solution can be expressed as the sum of a complementary solution and a particular solution.

$$
Q=Q_{c}+Q_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
L \frac{d^{2} Q_{c}}{d t^{2}}+R \frac{d Q_{c}}{d t}+\frac{Q_{c}}{C}=0 \tag{1}
\end{equation*}
$$

Because it has constant coefficients, it has solutions of the form $Q_{c}=e^{r t}$.

$$
Q_{c}=e^{r t} \quad \rightarrow \quad \frac{d Q_{c}}{d t}=r e^{r t} \quad \rightarrow \quad \frac{d^{2} Q_{c}}{d t^{2}}=r^{2} e^{r t}
$$

Substitute these formulas into equation (1).

$$
L\left(r^{2} e^{r t}\right)+R\left(r e^{r t}\right)+\frac{1}{C}\left(e^{r t}\right)=0
$$

Divide both sides by $e^{r t}$.

$$
L r^{2}+R r+\frac{1}{C}=0
$$

Solve for r, noting that with the given values $4 L C-R^{2} C^{2}>0$.

$$
\begin{gathered}
L C r^{2}+R C r+1=0 \\
r=\frac{-R C \pm \sqrt{R^{2} C^{2}-4(L C)(1)}}{2(L C)}=\frac{-R C \pm i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} \\
r=\left\{\frac{-R C-i \sqrt{4 L C-R^{2} C^{2}}}{2 L C}, \frac{-R C+i \sqrt{4 L C-R^{2} C^{2}}}{2 L C}\right\}
\end{gathered}
$$

Two solutions to equation (1) are

$$
\exp \left(\frac{-R C-i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) \quad \text { and } \quad \exp \left(\frac{-R C+i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) .
$$

According to the principle of superposition, the general solution is a linear combination of these two.

$$
\begin{aligned}
Q_{c}(t) & =C_{1} \exp \left(\frac{-R C-i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)+C_{2} \exp \left(\frac{\left.-R C+i \sqrt{4 L C-R^{2} C^{2}} t\right)}{2 L C} t\right) \\
& =C_{1}\left(-\frac{R}{2 L} t\right) \exp \left(-\frac{i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)+C_{2} \exp \left(-\frac{R}{2 L} t\right) \exp \left(\frac{i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) \\
& =\exp \left(-\frac{R}{2 L} t\right)\left[C_{1} \exp \left(-\frac{i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)+C_{2} \exp \left(\frac{i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)\right] \\
& =\exp \left(-\frac{R}{2 L} t\right)\left[C_{1}\left(\cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t-i \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)\right. \\
& =\exp \left(-\frac{R}{2 L} t\right)\left[\left(C_{1}+C_{2}\right) \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+i \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+\left(-i C_{1}+i C_{2}\right) \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right] \\
& \left.=\exp \left(-\frac{R}{2 L} t\right)\left(C_{3} \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+C_{4} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)\right]
\end{aligned}
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
L \frac{d^{2} Q_{p}}{d t^{2}}+R \frac{d Q_{p}}{d t}+\frac{Q_{p}}{C}=V \tag{2}
\end{equation*}
$$

Since the inhomogeneous term is a polynomial of degree 0 , the particular solution is $Q_{p}=A$.

$$
Q_{p}=A \quad \rightarrow \quad \frac{d Q_{p}}{d t}=0 \quad \rightarrow \quad \frac{d^{2} Q_{p}}{d t^{2}}=0
$$

Substitute these formulas into equation (2).

$$
\begin{gathered}
L(0)+R(0)+\frac{A}{C}=V \\
\frac{A}{C}=V
\end{gathered}
$$

Solve for A.

$$
A=C V
$$

The particular solution is then

$$
Q_{p}=C V,
$$

and the general solution to the original ODE is

$$
\begin{aligned}
Q(t) & =Q_{c}+Q_{p} \\
& =\exp \left(-\frac{R}{2 L} t\right)\left(C_{3} \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+C_{4} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)+C V .
\end{aligned}
$$

Differentiate it with respect to t.

$$
\begin{aligned}
& \frac{d Q}{d t}=-\frac{R}{2 L} \exp \left(-\frac{R}{2 L} t\right)\left(C_{3} \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+C_{4} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) \\
& \quad+\exp \left(-\frac{R}{2 L} t\right)\left(-C_{3} \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right. \\
& \left.\quad+C_{4} \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)
\end{aligned}
$$

Apply the initial conditions to determine C_{3} and C_{4}.

$$
\begin{aligned}
Q(0) & =C_{3}+C V=0.01 \\
\frac{d Q}{d t}(0) & =-\frac{R}{2 L}\left(C_{3}\right)+C_{4} \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C}=0
\end{aligned}
$$

Solving this system yields

$$
C_{3}=\frac{1}{100}-C V \quad \text { and } \quad C_{4}=\frac{R C\left(\frac{1}{100}-C V\right)}{\sqrt{4 L C-R^{2} C^{2}}}
$$

which means the solution to the initial value problem is

$$
\begin{aligned}
Q(t) & =\exp \left(-\frac{R}{2 L} t\right)\left[\left(\frac{1}{100}-C V\right) \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+\frac{R C\left(\frac{1}{100}-C V\right)}{\sqrt{4 L C-R^{2} C^{2}}} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right]+C V \\
& =\left(\frac{1}{100}-C V\right) \exp \left(-\frac{R}{2 L} t\right)\left(\cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+\frac{R C}{\sqrt{4 L C-R^{2} C^{2}}} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)+C V .
\end{aligned}
$$

Therefore, plugging in $L=2 \mathrm{H}, R=40 \Omega, C=0.0025 \mathrm{~F}$, and $V=12 \mathrm{~V}$,

$$
Q(t)=-0.02 e^{-10 t}(\cos 10 t+\sin 10 t)+0.03
$$

Below is a plot of $Q(t)$ (in Coulombs) versus t (in seconds).

